Lecture
Problem Solving
Dimensional analysis
Temperature
Density
specific gravity
Word problem

- Conversion of a measurement into a different unit
- Solving for an unknown

Road map approach
$\underline{\Sigma x}$
Convert 37.6 inches into centimeters.

Road map

εx
How many meters are in 372.7 yod?

$$
\begin{aligned}
& (1 \text { yod }=3 \mathrm{ft}, 1 \mathrm{ft}=12 \mathrm{in}, 1 \mathrm{in}=2.54 \mathrm{~cm}, \\
& 100 \mathrm{~cm}=1 \mathrm{~m})
\end{aligned}
$$

(1) Pare problem

- Given

Desired
-Equalities (Conversion factors)
(2) Road map
(3) Identify required equalities if not provided
(4) Construct problem
(5) Math
(b) Sigfigs

Read Map

$$
\frac{372.7 \times 3 \times 12 \times 2.54 \times 7}{1 \times 1 \times+\times+\times 100}
$$

$$
\begin{aligned}
372.7 \times 3 \times 12 \times 2.54 \div 100 & =340.79688 \mathrm{~m} \\
& =340.8 \mathrm{~m}
\end{aligned}
$$

3 keys Three key conversion factors

Length	$\frac{\text { English }}{}$	1 in
Mass	$=\frac{S I}{2.54 \mathrm{~cm} \text { Exact }}$	
Volume	11 b	$=453.6 \mathrm{~g}$ Measured
	1 Sig figs	

memorize 3 keys \& metric prefixes

$$
\begin{aligned}
& \rightarrow \text { kilo k } \times 10^{3} \\
& \text { Base - } \times 10^{\circ} \\
& \rightarrow \text { Cent } C \times 10^{-2} \\
& \rightarrow \text { mills } m \times 10^{-3} \\
& \text { Micro } \mu \times 10^{-6}
\end{aligned}
$$

Temperature

Temperature Conversions

$$
\begin{array}{lll}
{ }^{\circ} \mathrm{C} \leftrightarrow K & { }^{\circ} \mathrm{C} \rightarrow K & { }^{\circ} \mathrm{C}+273.15=K \\
\text { Requires a } & K \rightarrow{ }^{\circ} \mathrm{C} & K-273.15={ }^{\circ} \mathrm{C}
\end{array}
$$

${ }^{\circ} \mathrm{F} \longleftrightarrow{ }^{\circ} \mathrm{C}$
Requires a

$$
\begin{aligned}
& \text { Phase } \ddagger \text { unit } \\
& \text { Shift }
\end{aligned}
$$

$$
\begin{array}{ll}
{ }^{\circ} \mathrm{F} \rightarrow{ }^{\circ} \mathrm{C} & \left({ }^{\circ} \mathrm{F}-32\right) \times \frac{100^{\circ} \mathrm{C}}{180^{\circ} \mathrm{F}} \\
{ }^{\circ} \mathrm{C} \rightarrow{ }^{\circ} \mathrm{F} & { }^{\circ} \mathrm{C} \times \frac{180^{\circ} \mathrm{F}}{100^{\circ} \mathrm{C}}+32^{\circ} \mathrm{F}
\end{array}
$$

Convert $82.6^{\circ} \%$ to ${ }^{\circ} \mathrm{C}$.

$$
\begin{aligned}
\left(82.6^{\circ} \mathrm{F}-32^{\circ} \mathrm{F}\right) \times \frac{100^{\circ} \mathrm{C}}{180^{\circ} \mathrm{F}} & =28.1 / 111^{\circ} \mathrm{C} \\
& =28.1^{\circ} \mathrm{C}
\end{aligned}
$$

$75.72{ }^{\circ} \mathrm{C}$ into ${ }^{\circ} \mathrm{F}$?

$$
\begin{gathered}
75^{4} .72^{\circ} \mathrm{C} \times \frac{180^{\circ} \mathrm{F}}{100^{\circ} \mathrm{C}}+32^{\circ} \mathrm{F}=168.269^{\circ} \mathrm{F} \\
=168.3^{\circ} \mathrm{F}
\end{gathered}
$$

Density \& Specific Gravity
Ratio of the mass to volume of an object or material

All matter has mass
All matter has volume
All matter has a density $=\frac{\text { mass }}{\text { volume }}$

$$
\begin{aligned}
& \begin{array}{ccc}
\text { gas } & \text { liquid } & \\
g / L & g / m L & \text { Solid } \\
\text { or } & g / m L \\
\frac{g}{L} & \frac{g}{m L} & \text { or } \\
& & \frac{g}{m L} \\
& & o r
\end{array} \\
& \frac{9}{\mathrm{~cm}^{3}} \text { or } \frac{9}{c c} \\
& c c=\mathrm{cm}^{3} \\
& 1 \mathrm{lcm} \quad 1 \mathrm{~cm} \times 1 \mathrm{~cm} \times 1 \mathrm{~cm}
\end{aligned}
$$

Densities are measured properties \& reported at the temperature they are measured at.

Density can be an equality.
Types of problems
(1) Find a density given mass a volume
(2) Find a volume given mass id density
(3) Find a mass given volume a density

Ex The density of iron (Fe) is $7.86 \mathrm{~g} / \mathrm{cm}^{3}$. How many grams would a block of iron weigh if it's volume was $394.7 \mathrm{~cm}^{3}$?
Density $\quad 7.86 \mathrm{~g}=1 \mathrm{~cm}^{3} \quad \frac{7.86 \mathrm{~g}}{1 \mathrm{~cm}^{3}}$
Road map

$$
\begin{aligned}
& \mathrm{cm}^{3} \longrightarrow 9.86 \mathrm{~g}=1 \mathrm{~cm} \longrightarrow 9 \\
& 394.7 \mathrm{~cm}^{3} \times \frac{7.86 \mathrm{~g}^{2}}{1 \mathrm{~cm}^{3}}=3102 \mathrm{z} .342 \mathrm{~g} \\
& 3100 \mathrm{~g} \quad 2 \text { sigfigs } \\
& 3100 \text {.g } 4 \text { sig figs } \\
& 3.10 \times 10^{3} \mathrm{~g} \quad 3 \text { sigfigs ! }
\end{aligned}
$$

Specific Gravity,
What is the density of the Ocean?

Hydrometer

$$
\begin{aligned}
& \text { Specific gravity }= \frac{\text { density object girL }}{\text { density of } H_{20} \text { e } 4.00^{\circ} \mathrm{C}} \\
& \quad 1.000 \text { gill }
\end{aligned}
$$

